
Review series on helminths, immune modulation and the hygiene
hypothesis: Mechanisms underlying helminth modulation of

dendritic cell function

Introduction

Parasitic helminths are estimated to infect three billion

people.1 The risk of mortality as a result of infection with

helminths is for the most part low. However, helminth

infections are often chronic and can cause insidious or

frank disease that leads to considerable morbidity.1 Thus,

helminth pathogens differ from human immunodeficiency

virus (HIV), Mycobacterium tuberculosis and Plasmodium

spp. in being associated with low mortality but high mor-

bidity. A consequence of this is that investment in

research on and control of helminth diseases has been rel-

atively meager, and this has been noted recently with

appeals for focus on the so-called neglected tropical dis-

eases, many of which are caused by helminth infections.2

‘Helminth’ is a working term for metazoan organisms

that are worm-like. In reality, the helminth group

includes highly diverse organisms belonging to distantly

related phyla – Nematoda (round worms) and Platy-

helminthes (flatworms).1 Despite the lack of relatedness,

infections with round worms and flatworms stereotypi-

cally lead to T helper type 2 (Th2) responses, in which

responding CD4 T cells make interleukin (IL)-4, IL-5,

IL-13 and a panel of additional cytokines, and concomi-

tantly eosinophils, basophils, mast cells and goblet cells are

involved and contribute to the response.3 In such settings,

responding B cells make immunoglobulin E (IgE) and

IgG1. Interestingly, the ability to induce Th2 responses

does not appear to be an adaptation to parasitism, as

free-living helminths also possess this property.4 Th2

responses play a crucial role in resistance to helminths,3

but can also be immunopathological.5 Their pathological

potential is underpinned by the fact that they play causa-

tive roles in prevalent diseases of westernized societies

such as allergic disease, asthma and ulcerative colitis.

CD4 T cells cannot directly recognize antigen, but

rather require that it be processed and presented bound

to major histocompatibility complex (MHC) class II mol-

ecules on the surface of antigen-presenting cells. Relatively

few cell types – dendritic cells (DCs), macrophages and B

cells, most prominently – possess the ability to present

antigen/MHC class II complexes. Amongst these, DCs are

considered to be the cells that possess the greatest ability

to activate naı̈ve Th cells and thereby initiate adaptive

immune responses. A major role of DCs in this context is

to interpret pathogen-inherent signals to provide cues for
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Summary

Dendritic cells (DCs) play a central role in activating CD4 T (T helper,

Th) cells. As a component of their response to pathogen-associated sti-

muli, DCs produce cytokines and express surface molecules that provide

important cues to modulate the effector functions of responding Th cells.

Much is known of how DCs respond to, and influence immune response

outcome to, bacterial and viral pathogens. However, relatively little is

understood about how DCs respond to helminth parasites. This is an area

of considerable interest since it impacts our understanding of the initia-

tion of Th2 responses, which are stereotypically associated with helminth

infections, and the regulation of allergic and autoimmune pathologies

which evidence suggests are less severe or absent in individuals infected

with helminths. This review attempts to summarize our understanding of

the effects of helminth products on dendritic cell biology.
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Th cell differentiation into cells that possess effector prop-

erties that are appropriate for countering the inducing

stimulus. For example, DCs exposed to Gram-negative

bacteria respond by making IL-6, IL-12 and IL-23, which

may promote the development of naı̈ve Th cells into Th1

or Th17 cells which are able to initiate processes that

facilitate control of bacterial infections (e.g. see refs 6 and

7). Because they occupy such a key position in the

immune responses, there has been considerable interest in

how DCs interact with helminth parasites, particularly in

the context of understanding how adaptive immune

responses in helminth-infected animals become Th2-

biased.

In the interest of clarity and brevity, we have oversim-

plified two issues: (i) we have avoided excessive reference

to different helminth species or life stages, and frequently

refer only to ‘helminths’ or ‘helminth products’, and (ii)

we make no reference to different DC subsets, because

few specific data regarding their interactions with helm-

inths are available.

The induction of Th2 responses by DCs

The ability of DCs to interpret helminth-inherent signals

and induce Th2 responses has been illustrated by experi-

ments in which mice injected with DCs that have been

pulsed with extracts of helminths in vitro develop Th2-

biased helminth-specific responses (e.g. 8–10). That these

responses are directly induced by the injected DCs is indi-

cated by the inability of MHC II-deficient DCs to prime

T-cell responses in these systems.8 The Th2-polarizing

properties of helminths appear to reflect the conditioning

of DCs to induce these types of immune response,

because helminth products can act as Th2 adjuvants for

unrelated antigens.11–13

The response of DCs to helminth products

The response of DCs to microbial pathogens is mediated

in large part via Toll-like receptors (TLRs), with input

from other pattern recognition receptors such as lec-

tins.14,15 The DC response initiated by ligation of differ-

ent TLRs is somewhat stereotypical. It is characterized

by profound changes in gene expression that lead to DC

‘maturation’, a term used to describe the full breadth of

changes in DC biology that accompany the TLR-medi-

ated transition from a more resting state into a more

dynamic state in which the cells secrete a broad array of

cytokines and chemokines, begin processing previously

acquired antigen for presentation in MHC molecules,

and express important costimulatory molecules such as

CD80 and CD86. These changes in cell biology reflect

the initiation of mitogen-activated protein kinases

(MAPKs) and nuclear factor (NF)-jB signalling by

TLRs, and effects of type 1 interferon (IFN) production

and autocrine signalling.16,17 TLR signalling is predomi-

nantly MyD88-dependent, although some TLRs function

independently of MyD88, in a Toll/IL-1 receptor domain

containing adaptor inducing IFN-beta (Trif)-dependent

manner.16 For obvious reasons, DC maturation has been

considered to be essential for DCs to be able to induce

T-cell responses.18 However, it has become clear that

DCs responding to helminth products do not mature in

the conventional sense.

Unbiased global gene expression profiles, or proteomic

analyses of mouse or human DCs following stimulation

with helminths, have revealed that remarkably few genes

are induced, and that those that are have little obvious

connection to the ability of the cells to induce Th2

responses.19–21 Other studies describe targeted analyses of

potentially important molecules expressed in response to

exposure to helminth products. For the most part these

concur in finding that helminth products fail to directly

activate DCs (e.g. refs 8 and 22). In contrast, proteins

secreted by the nematode Nippostrongylus brasiliensis were

found to induce partial activation of DCs, inducing the

expression of CD40, CD86 and OX40L, which have been

associated with Th2 promotion, and IL-6, IL12p40 and

macrophage-derived chemokine.9 Nevertheless, the overall

picture is that DCs produce a very muted response to

helminth products.

A striking and significant difference between Th2

responses and Th1 responses is that the former develop

normally in the absence of MyD8823–25 and, in cases

where it has been examined, Trif (CK and EJP, unpub-

lished data). The implication of this finding is that con-

ventional TLR-initiated signalling in DCs is not necessary

for them to be able to induce Th2 responses.26 Consistent

with this, analyses of signalling events within the NF-jB

and MAPK pathways have revealed significant differences

between DCs exposed to helminth products and those

stimulated with microbial products such as bacterial lipo-

polysaccharide (LPS). For example, extracellular signal

regulated kinase (ERK), c-Jun N-terminal kinases (JNK)

and p38 are heavily phosphorylated after exposure of DCs

to LPS, but in DCs exposed to schistosome egg antigen

(SEA), a soluble extract of schistosome eggs that is capa-

ble of conditioning DCs to induce strong Th2 responses,

ERK and to a lesser extent p38 are phosphorylated, but

JNK is not.20 In this case, the phosphorylation of ERK

has been reported to be unusually sustained, and has been

shown to stabilize c-FOS, which suppresses IL-12 produc-

tion.27 Lacto-N-fucopentaose III (LNFPIII), a milk sugar

that contains the Lewisx trisacharide that is found in SEA,

and which acts as a Th2 response-promoting adjuvant

when conjugated to other proteins,12 also stimulates ERK

phosphorylation.28 A role for ERK in Th2 response devel-

opment is indicated by the findings that ERK)/) mice

exhibit increased susceptibility to experimental autoim-

mune encephalomyelitis and are Th1 prone,29 although
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definitive experiments exploring Th2 response develop-

ment in these animals following helminth infection

remain to be carried out. Moreover, not all Th2-condi-

tioning helminth products stimulate ERK phosphorylation

in DCs.30 Exposure of DCs to helminth products has also

been reported to stimulate NF-jB activation. For exam-

ple, LNFPIII stimulates rapid, transient NF-jB nuclear

translocation and activation in the absence of inhibitor of

nuclear factor kappa B (IjB) degradation.31 Consistent

with these findings, neither SEA nor LNFPIII-dextran

(dex) pulsed NF-jB1)/) DCs are able to induce Th2

responses.31,32 Why NF-jB1 is essential for the ability of

DCs to prime Th2 responses remains to be determined.

How are helminth products recognized by DCs?

Despite the lack of evidence to support a role for conven-

tional TLR-initiated signalling in DCs in Th2 response

induction, TLRs have been implicated in the recognition

of helminth products by DCs. LNFPIII and excretory/

secretory (ES)-62, a phosphorylcholine-containing protein

secreted by the nematode Acanthocheilonema viteae, con-

dition DCs to induce Th2 responses through TLR4.28,33

Consistent with this, TLR4 has been implicated in the

Th2 response induction in airways hypersensitivity.34

However, helminth-associated Th2 responses do not

appear to be abrogated in the absence of TLR4, indicating

that TLR4 does not play a uniformly important role in

the ability of the host to recognize helminth pathogens

and respond appropriately (refs 35 and 36, and CK and

EJP, unpublished observations). Lysophosphatidylserine

from schistosomes has been reported to trigger DC acti-

vation by binding to TLR2 in DCs,37 and the defined

TLR2 ligand pam3cys has been shown to share with SEA

the ability to stimulate prolonged ERK phosphorylation

in DCs, suggesting that key events in the helminth-medi-

ated conditioning of DCs may be mediated by TLR2.27

Nevertheless, Th2 responses do develop, and actually are

exaggerated in TLR2)/) mice infected with

Schistosoma mansoni [although these animals were found

to exhibit a defect in regulatory T (Treg) cell develop-

ment, which is consistent with the findings of van der

Kleij et al.].38 TLR3 has also been implicated in the

response to schistosome eggs, which have been reported

to contain double-stranded RNA which activates NF-jB

signalling in DCs, leading to IFN-b production.39 How-

ever, TLR3 deficiency, like TLR2 deficiency, results in

exaggerated Th2 responses during schistosome infection.38

There has been great interest recently in the possibility

that C-type lectins represent the major class of pattern

recognition receptors for helminth products. In many

ways, this story has its origins in Harn’s important early

studies showing that the induction of Th2 responses is

largely attributable to carbohydrates in SEA functioning

as adjuvants. He found that SEA treated with metaperio-

diate lost the ability to induce Th2 responses when intro-

duced to mice by intranasal administration.40 Further

work identified N-glycans containing fucose, expressed in

multiple schistosome life stages, as possessing many of the

Th2-inducing properties of SEA, as described

above,28,31,41,42 and generally indicated a role for glycans

in the priming of Th2 responses by helminths.4 In 2003 a

key paper by van Kooyk and colleagues showed that

DC-specific intercellular adhesion molecule (ICAM)-3-

grabbing nonintegrin (DC-SIGN) on DCs specifically rec-

ognized mannose- and fucose-containing glycoconjugates,

and could bind to a schistosome extract.43 Later it was

shown that monoclonal antibodies against the carbo-

hydrate antigens LewisX and LDNF [GalNAcbeta1-

4(Fucalpha1-3)GlcNAc] could block the binding of SEA

to DC-SIGN.44 DC-SIGN also serves as a receptor for

other schistosome glycans, including pseudo-LewisY gly-

colipids on the infectious larval stage of these parasites.45

Thus DC-SIGN is a receptor for Lewis/LDNF-like struc-

tures in schistosomes. Interestingly, DC-SIGN has also

been described as the receptor for Ara h1, the major gly-

coprotein allergen from peanuts.46 More recently it has

become clear that DCs internalize SEA through the com-

binatorial effects of three C-type lectins, namely DC-

SIGN, macrophage galactose-type lectin (MGL) and the

mannose receptor,47 and it seems likely that the overt

antigenicity of SEA, which (like certain other helminth

products) can powerfully induce immune responses in

the absence of added adjuvant, relates to the fact that

multiple receptors are capable of mediating its uptake

into DCs.

Inhibition of DC activation by helminth products

The available evidence indicates that helminths not only

fail to induce conventional signs of activation in DCs, but

additionally are capable of markedly inhibiting DC matu-

ration by TLR ligands. Specifically, TLR-mediated activa-

tion, as determined by IL-12 production and/or MHC

class II or costimulatory molecule expression, or by

microarray analyses, has been reported to be significantly

suppressed when DCs are costimulated with a broad vari-

ety of helminths and/or their products.20,22,35,47–50 In

many cases, decreased responsiveness to TLR ligands is

associated with increased production of the anti-inflam-

matory cytokine IL-10, and this cytokine can contribute

to the overall suppressive effects observed (e.g. refs 20

and 50). Mechanistically, the pathways that allow helm-

inths to suppress TLR signalling remain unclear. How-

ever, detailed work on C-type lectins has revealed that

signalling initiated by these receptors can positively or

negatively influence TLR signalling, depending on the

context.15 Strikingly, many of the effects of helminths on

DCs are mirrored by the effects of mannose capped

lipoarabinomannan (ManLAM), a Mycobacterium tubercu-
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losis cell wall component and DC-SIGN ligand.51 Man-

LAM antagonizes TLR4 signalling, promoting IL-10 pro-

duction as it does so, and is consequently believed to play

an important role in promoting the survival of the bacte-

rium. Recent evidence indicates that ManLAM activates

the serine and threonine kinase Raf-1, which leads to

acetylation of NF-jB p65, but that this occurs only if NF-

jB has first been activated by TLR signalling.52 Acetyla-

tion of p65 prolongs the transcriptional activity of NF-jB

and leads to increased IL-10 production. These findings

are highly reminiscent of those reported for SEA, also a

DC-SIGN ligand, in that SEA does not induce IL-10 pro-

duction itself, but rather enhances IL-10 production pro-

moted by TLR ligands.20 At this time, then, it is

appropriate to hypothesize that C-type lectins play a role

in mediating the immunomodulatory effects of helminth

products on DCs. While this does not entirely mesh with

the fact that some helminth modulatory molecules are

clearly not glycans (e.g. the active component of the

immunomodulatory molecule ES-62 from A. vitei is pho-

phorylcholine),30 it should be pointed out that, despite

their name, not all C-type lectins have been documented

to recognize sugars,15 leaving open the possibility that

they may interact with other classes of molecules.

Requirements for Th2 response induction by DCs
pulsed with helminth antigen

Signalling through the IL-4 receptor (IL-4R) on CD4+ T

cells was found to be important for the full establishment

of Th2 responses.53 This raised the possibility that hel-

minth products stimulate DCs to make IL-4, which then

plays a critical role in priming the Th2 response. This

would be comparable to the way in which DCs pulsed with

bacterial products make IL-12, IL-23 and IL-6 and focus

Th responses in Th1 or Th17 directions. However, this

turned out not to be the case, as (i) there is little evidence

for DCs making IL-4, and (ii) bone marrow-derived DCs

from IL-4)/) mice are as capable as wild-type DCs of

inducing helminth-specific Th2 responses.54 Indeed, at this

time there is little evidence for essential roles for any DC-

produced cytokines in Th2 response induction. However,

it is clear that the expression of certain costimulatory mol-

ecules can be critical. For example, DCs that cannot

express CD40 are incapable of inducing Th2 responses fol-

lowing pulsing with SEA,55 and, consistent with this, mice

lacking CD154 or CD40 fail to develop Th2 responses

when infected with schistosomes.55 OX40L expression by

DCs also appears to play an important role in this pro-

cess.56 Functionally, CD40 is believed to be serving as a

receptor to allow DC maturation in response to interac-

tions with CD154 and OX40L is considered to serve an

essential costimulatory function for Th cell activation in

the context of a DC that has been exposed to a helminth

product rather than an activating microbial stimulus.

Recent reports have emphasized roles for Notch in

Th157,58 and in Th2 cell59–62 differentiation and high-

lighted the potential for differential Notch ligand engage-

ment to control disparate outcomes downstream of

common Notch receptors. These studies have linked the

preferential expression of the Notch ligand Delta4 by DCs

as being important for Th1 response induction, and the

expression of Jagged2 as playing a role in Th2

responses.59 However, recent reports have been unable to

identify a role for Jagged 2 in Th2 response induction by

SEA-pulsed DCs.63,64 In contrast, there appears to be a

major role for TLR-induced Delta1 and Delta4 expression

on DCs in the ability of TLR-stimulated DCs to suppress

the differentiation of naı̈ve Th cells into Th2 cells.65,66

Consistent with the ability of SEA to suppress TLR activa-

tion of DCs, SEA is able to suppress the expression of

Delta1 and Delta4 by TLR-stimulated DCs (JS and EJP,

data not shown), and in this way promote Th2 response

development.

The role of other cell types in DC activation in
response to helminths

The most straightforward way to envisage DCs respond-

ing to helminths is through direct interactions. Clearly

these types of interaction do occur and DCs are capable

of directly responding to helminth products in the

absence of other cell types. However, there is increasing

interest in the possibility that, following infection, in a

co-ordinated fashion, other cell types respond to the

invading pathogen and interface with DCs to profoundly

effect their behaviour and the outcome of the immune

response. Such a series of events was illustrated recently

when, during the development of immunity to the gut

helminth Trichuris muris, NF-jB1 signalling in intestinal

epithelial cells was shown to play a crucial role in the

production of thymic stromal lymphopoietin, a cytokine

that promotes Th2 responses, in this case by preventing

the production of Th1- and Th17-polarizing cytokines by

DCs.67 In another example, the requirement for CD4 T

cells to express CD40 in order to induce SEA-specific

effects reflects a requirement for DCs to interact with

CD154-expressing cells.55 Recently it was shown that both

T cells and non-lymphoid cells can serve this latter func-

tion.68

Helminths and host immune regulation – the big
picture

There continues to be great interest in the possibility that

the exacerbation of TLR signalling underlies the ability of

helminths to modulate the exaggerated immune responses

observed in inflammatory autoimmune conditions.69

Experimentally this has been illustrated in, for example,

the non-obese diabetic (NOD) mouse, where infection
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with S. mansoni prevents the development of diabetes.48

It is particularly interesting that helminth infections can

also mitigate some allergic conditions.70 For example,

there is a low prevalence of positive skin test to aeroaller-

gens in individuals living in areas endemic for Ascaris

lumbricoides71 or S. mansoni infection.72 Based on experi-

mental studies in mice, It seems likely that this reflects

the development of broadly effective Treg cells in

response to helminth infection73,74 Whether this reflects a

particular ability of helminth product-exposed DCs to

induce Treg cells remains to be established.

The interactions of helminths with DCs – a
summary

Helminth products appear to be inherently adjuvantized,

as they can promote strong Th2 responses to themselves

and to bystander antigens, in the absence of any additional

adjuvant. Consistent with the view that DCs are a primary

interface between infection and the induction the adaptive

immune response, DCs exposed to helminth products

develop the ability to induce Th2 responses. Although

there are data supporting the view that TLRs act as recep-

tors for helminth products, and play a role in conditioning

DCs to induce Th2 responses, accumulating evidence sug-

gests that C-type lectins are likely to play the dominant

role in this regard. These pattern recognition receptors not

only facilitate antigen uptake by DCs, but also can sup-

press the ability of DCs to respond to TLR ligands. Conse-

quently, a role for these receptors accommodates two of

the noted features of helminth antigens: (i) their antige-

nicity, which would be expected to be accentuated if they

were to be delivered by receptor-mediated uptake directly

into DCs, and (ii) their ability to counteract aspects of

classical TLR-mediated DC activation and generally sup-

press DC maturation. The latter property of helminth

products is consistent with, and may underlie, their ability

to promote Th2 responses, which in general are strongly

exacerbated by TLR signalling.
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